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At low energy, the band structure of graphene can be approximated by two degenerate valleys (K,K') about

which the electronic spectra of the valence and conduction bands have linear dispersion relations. An electronic
state in this band spectrum is a linear superposition of states from the A and B sublattices of the honeycomb
lattice of graphene. In a quantizing magnetic field, the band spectrum is split into Landau levels with level N=0
having zero weight on the B(A) sublattice for the K(K') valley. Treating the valley index as a pseudospin and
assuming the real spins to be fully polarized, we compute the energy of Wigner and Skyrme crystals in the
Hartree-Fock approximation. We show that Skyrme crystals have lower energy than Wigner crystals (WCs),

i.e., crystals with no pseudospin texture in some range of filling factor v around integer fillings. The collective
mode spectrum of the valley-skyrmion crystal has three linearly dispersing Goldstone modes in addition to the
usual phonon mode, while a WC has only one extra Goldstone mode with a quadratic dispersion. We comment
on how these modes should be affected by disorder and how, in principle, a microwave absorption experiment

could distinguish between Wigner and Skyrme crystals.
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I. INTRODUCTION

For a conventional two-dimensional electron gas (2DEG)
created in a semiconductor heterostructure, theoretical calcu-
lations show that, in the presence of a strong perpendicular
magnetic field, a Wigner crystal (WC) state has lower energy
than the fractional quantum Hall liquids for filling factors
v=1/6.5." Transport measurements indicative of this elec-
tron crystallization have been reported by several groups.’
These measurements include the observation of a strong in-
crease in the diagonal resistivity p,,, nonlinear I-V character-
istics, and broadband noise. Another series of experiments
involving microwave absorption® has also detected a reso-
nance in the real part of the longitudinal conductivity o, (w)
that has been attributed to the pinning mode of a disordered
WC. Such a resonance was observed not only at small filling
factor ¥=<1/6.5 in the lowest Landau level but also at small
filling factor in the higher Landau levels, where the forma-
tion of a quasiparticle solid is expected in a clean sample. In
higher Landau levels, a study of the evolution of the pinning
mode with filling factor reveals several transitions of the
2DEG ground state from a WC at low v to a series of bubble
crystals with increasing number of electrons per lattice site
as v is increased and into a modulated stripe state (or aniso-
tropic WC) near half filling.*>

In a conventional 2DEG, the Landau-level energy spec-
trum is given by E,=(n+1/2)hw, where w,=eB/m”"c is the
cyclotron frequency with m* the effective mass. Each of
these levels is highly degenerate so that a partially filled
Landau level is dominated by electron-electron interactions
and is expected to enter a crystal state. Similar physics is
expected to occur in graphene. In a strong perpendicular
magnetic field, there is also a series of highly degenerate
Landau levels with energies given by E,,=sgn(n)\2h%\s’m
where v is the Fermi velocity. In two recent papers, Zhang
and Joglekar®’ have explored the possibility of Wigner crys-
tallization in graphene (including bubbles and stripes) in the
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presence of a quantizing magnetic field. While the situations
in the presence of a field are similar for the conventional
2DEG and graphene, in the absence of a field, they are likely
to be different. At low densities, electrons in the former sys-
tem are believed to form a WC. However, graphene in a zero
field has a gapless noninteracting spectrum, so that an ar-
rangement of electrons into a two-dimensional lattice cannot
create effective potentials which localize the individual elec-
trons. This “Klein paradox” physics® undermines the stability
of the WC. In a magnetic field, however, the kinetic energy
contains a series of gaps and the physics of the 2DEG is
dominated by the Coulomb interaction alone. A magnetic-
field-induced Wigner solid is thus expected.’

In the Hartree-Fock approximation (HFA), the potential
energy depends on the effective Hartree H,(q) and Fock
X,(q) interactions defined in Landau level n. To an excellent
approximation,'® these effective interactions for n=0 are
identical to that of a conventional 2DEG so that the HFA
phase diagram should be the same in both systems. To de-
velop the analogy further, we use a pseudospin language in
which the two nonequivalent valleys K and K’ of graphene
(the valence and conduction bands in graphene touch at two
inequivalent points K and K’=-K and four other points or
valleys related by symmetry) are mapped to the valley pseu-
dospin | =) states. If we assume that the real spins are com-
pletely polarized in the graphene system, then, for n=0, the
HF Hamiltonian for the 2DEG in graphene is identical to that
of a conventional 2DEG with zero Zeeman coupling. For n
# 0, however, the effective interactions are not identical. On
this basis, we can expect that pseudospin skyrmion crystals
are possible in graphene around filling factor v=1. In a con-
ventional 2DEG, skyrmion crystals are restricted to the low-
est Landau level only but this may not be the case in
graphene. Indeed, recently Yang et al.'' have shown that
skyrmions are the lowest-energy-charged excitations in
graphene for Landau levels up to n=3.

In this paper, we explore the possibility of Skyrmion crys-
tals near integer filling in each Landau level and compare
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their stability and collective mode properties to those of WC
states.” We find that, in the range of filling factors acces-
sible to our numerical method (i.e.,
crystals can exist in Landau level N=0 as well as in Landau
level N=1 unlike the case of the conventional 2DEG where
Skyrmion crystal are only present in N=0. Because there is
no effective Zeeman coupling in graphene, the ground state
is generically a crystal of merons rather than of skyrmions,
as it is also the case in the conventional 2DEG.'> We then
compute the collective mode dispersions in the Wigner and
meron crystal (MC) phases. We show that the approximate
SU(2) symmetry of the Hamiltonian leads, for a WC, to a
quadratically dispersing valley-pseudospin gapless mode in
addition to the phonon mode present in the conventional
2DEG. In the MC, we find instead, at any value of N, three
gapless modes with linear dispersions in addition to the pho-
non mode. In graphene, these modes represent charge fluc-
tuations between the sublattices instead of spin fluctuations
as in a conventional 2DEG; and, so, we speculate that they
may be visible in microwave absorption experiments. Each
crystal structure, Wigner or Skyrme, may thus have a unique
signature in microwave absorption in contrast to Wigner and
spin Skyrmion crystals in conventional 2DEGs, where the
absorption spectrum does not distinguish between these two
structures.

We remark that the detection of valley Skyrmion analo-
gous to the type we consider in the present work has been
reported in AlAs 2DEG."? In this two-valley system, an ex-
ternally applied strain breaks the isospin SU(2) symmetry by
lifting the energy degeneracy between the valleys. A study of
the quantum Hall activation gap with strain reveals the pres-
ence of quasiparticles with valley-pseudospin texture.

This paper is organized in the following way. We review
in Secs. II and III some basic properties of graphene and
summarize our Hartree-Fock and time-dependent Hartree-
Fock formalisms for computing the phase diagram and col-
lective excitations. Our numerical results are presented in
Sec. IV. We discuss in Sec. V how the collective modes that
we find should be affected by the presence of disorder and
speculate on their visibility in microwave absorption experi-
ments. We conclude in Sec. VL.

II. HARTREE-FOCK HAMILTONIAN

In this section, we briefly explain the Hartree-Fock for-
malism that we use to compute the energy and collective
excitations of the crystal states. We start by reviewing the
model Hamiltonian for electrons in undoped graphene
around the Fermi energy.'*

A lattice point in graphene is given by R=n;a,+n,a,
where n;,n, are positive or negative 1ntegers and the primi-
tive vectors are chosen as a,=(a/2)X- (\3/2)y and a,=ax
with the two carbon atoms in the unit cell at positions r;
=0 and r,=—cyy where cy=a/ \V3=1.42 A is the separation
between two adjacent carbon atoms. We define the carbon
atoms with basis vector r; (r,) as part of the A(B) sublattice.
The tight-binding Hamiltonian for electrons in the p,_ orbitals
of the carbon atoms is given by
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H=-1,2, (ajb;+H.c.), (1)
(ij)

where a;(b;) is the annihilation operator for an electron on
the A(B) sublattice of graphene at site i and the summation is
over nearest neighbors only with hopping energy (between
different sublattices) 7,=2.8 eV. In this approximation, the
dispersion relations for the valence (-) and conduction (+)
bands are given by

k
E. (k)= = to[l +4 cosz(%>

k Ek, 12
+4 cos(%)cos( ! 2@)} . (2)

For undoped graphene, the Fermi level is at energy E=0.
With our choice of orientation for the Bravais lattice, the
positions of the two nonequivalent Dirac points are at K
=—(4m/3a)X and K’'=(4m/3a)X. Around each of these
points in k space, the dispersion of the conduction and va-
lence bands can be approximated by

E(K +p)=EK’ (3)

where vy=3cgty/ 2% is the Fermi velocity. In the (A, B) basis,
the Hamiltonians around the Dirac points for electrons in the
conduction (+) or valence (-) band are given by

0 peiiﬁp
>, 4)

H+ = =* ﬁ — .
_(p) vO(pe+10p 0

where 6, is the angle between wave vector p and the x axis.

In the presence of a transverse magnetic field B=Bz, the
Hamiltonian is obtained by making the Peierls substitution
E(p) — E(p+eA/fic), where A is the vector potential of the
magnetic field defined such that VX A=B. In terms of the
covariant momentum P=—iAV +eA/c=hAp+eA/c, we have

Ha(p)= + ( 0 thipy) )
SPEE0\p zip 0 )
with the commutation relation
ﬁZ
[P.P,]=~ (6)

where €=\ic/eB is the magnetic length. The original coni-
cal dispersions at Dirac points K and K’ are now split into a
set of degenerate Landau levels, which have quantized ener-
gies given by
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2ﬁv /|— (7)

n b

= sgn(n)

where n=0, =1, £2,... The wave functions for an electron
in these Landau levels (again in the A, B basis) are given by

o[ ho(r
(r|[K';0,k) = ¢7® 'r< 0’(];( ) ), (8)
) 0
(r|K;0,k) = e_lK'r( ) , 9)
ho,k(l')
for Landau level n=0 and by
- hjp 4(x)
(r|K’;n,k>=?e_’K ~r( |n[ .k )’ (10)
\"2 Sgn(n)h‘nl—l,k(r)
1 (= sen(m)hy,_4(r)
(K k) = —=¢ 5T e )
V2 By (1)

for the other levels. In the Landau gauge A =Bxy,

1 4 (x k€) 2252
h r=——m —Lk_)H —[(x = k€°)=12¢ ]’
l’l,k( ) (7T€2L}2,) \"2"}’[' €

(12)

where k=2mm/L, (with m=0,*=1,*2,..
Hermite polynomial.

The second quantized expression for the Coulomb inter-
action can be written, with the help of Egs. (8)—(11), as

.) and H,(x) is a

1 .
= gE V((I)J dr<r|0'1 ;nl,kl>*€lq'r<1'|(74;n4,k4>
q

Xfdr’<r'|Uz;n2,k2>#eiq'r’<r’|ff3;n3,k3>

i i
X C0'| 1y ,k] C0'2,nz,k2C0'3’”3’k3CU'4Jl4’k4 ? ( 1 3)

where a summation over repeated indices is implied and
where we have used o;,=*1 for the valleys at =K. The
Fourier transform of the two-dimensional Coulomb interac-
tion is V(q) 2me?/q. At this point, we introduce the func-

tions = Hn e (q) which we define as

fdr(r|0;n,k>+e"q'r(r|0";n’,k/>
= (i2)ax(kk) (i 2>("-"'>K<"+k')‘252’2’/(q) Okk'—q

(14)

These functions = o (q) are given by
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1
B, ()= 5@(|"|)®(|n'|)[F\n|,\nf\(Q)

1
+sgn(n)sgn(n’)Fl, -y jp|-1(@)] + 75[5n,0@(|”'|)
\

+ 5n’,0®(|n|)]F\n\,\n’|(q) + 5n,05n',0F0,0(q)7 (15)

and
B (q) =~ 0%®(|n|)®(|n'|)[sgn(n)F|n|_1’|n,‘(q + 02K)
= sgn(n)Fpyf -1 (q + 02K)]
+ U%[b‘n,o(In’l)sgn(n’)FO,nq_,(q + 02K)

= 8,00 (n|)sgn(n)F,1_; o(q + 02K)], (16)
where ©(n) is the step function and

Fn,n’(nzn’)(q)

12 ¢ _ g2 [ o202
_(n (g, +th) exp A P A
n! \r2 4 n 2

(17)

with an’(n<n’)(q) [ n’.n(n=n'") ( Q)]
In our study of crystal states, we need matrix elements of

" (G) with G~2mn/a, where a is here the
lattice constant of the Wigner or Skyrme crystals. We assume
that the electronic density can be made small enough so that
aop>a, the lattice constant of graphene. Moreover, although
the summations over G extend to infinity in the formulas
below, the exponential factor ~e~G €12

'—’U'(I'

the form =,

appearing in the
functions = g0 . (G) makes these summations rapidly conver-
gent if the ﬁlhng factor is not too small. We thus have an

effective cutoff value G, such that G,,,<<K. It follows

then that we can neglect the off-diagonal matrix elements

:‘m #‘T(G) that scatter electrons from one valley to another

since they are very small in comparison with the other
terms.! Essentially the same approximation was made in
Ref. 6. We also make the usual approximation of neglecting
Landau-level mixing. This approximation is justified since
the energy of the Landau levels are given by Eq. (7) so that
the gap between the n=0 and 1 Landau levels is thus AL
=\2hvp/ €= 424\B K (with B in Tesla) while the Coulomb
interaction energy is of the order of e?/ k€ = 130VB K (taking
k=35 from Ref. 15). It was recently shown numerically that
Landau-level mixing is indeed negligible.””

With a Landé factor g~2, the Zeeman gap A,=gugB
=1.34B K is however quite small in comparison with the
Coulomb energy and the possibility of crystal states with
spin as well as valley pseudospin textures can also be con-
sidered. Previous studies of analogous bilayer 2DEG
systems'® suggest that ground states with real spin admixed
are rather fragile with respect to Zeeman coupling and it
seems unlikely that such a textured state would be stable for
this value of g. Our preliminary studies of the phase diagram
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of the combined spin and valley pseudospin system confirm
this conclusion.!” In what follows we assume that the elec-
tronic spin is fully polarized so that we need only consider
the valley degree of freedom.

In the HFA, our Hamiltonian becomes (apart from a con-
stant term)

H=N,> > H,(qQ){p’" (@) (-q)

q o0’
~Ny 2 2 X (@ (@)l T(-q), (18
oo 4

where N is the Landau-level degeneracy and we have de-
fined the Hartree and Fock interactions

e’ 1\ —
H(qQ)=\|— | = |E@E.(-q), (19)
«t )\ gt
1 (e X g
Xu(@) = —| = | 2 Hy(p)e® ", (20)
N¢ K€ P
with the form factor
- 1
E.(q) = 5®(|n|)[F\n|,\n|(Q) + Flojet n-1 (@] + 8, 0F 0(q).
(21)
In Eq. (18), we have defined the operators
o0’ 1 —(i "¢?
Py (q) = 2 e IRl 5k,k’+qvc;rr,n,kctr',n,k"
ik’ ’
(22)

Note that, by definition,
Py 7(q=0))=v, (23)

where v, ,=N,, ,/ N is the electronic filling factor of the n'th
Landau level in the valley at oK. In a crystal, the average

value (p,’ "T’(q)> is nonzero only for q=G, a reciprocal lattice
vector.

The ground-state energy per electron in Landau level n is
simply

E 1 !
N- 2—1/’!% 33/ H,(a)py(@)Xp;, 7 (-q))

- LS S x @l @)l (24)
2v, o 4

From Eq. (21), we see that the form factor Z(q) for Landau
level n=0 is exactly the same as for a 2DEG in a semicon-
ductor quantum well or heterostructure. It follows that the
phase diagram for graphene at low-filling factor will be
closely related to that of a conventional 2DEG with vanish-

ing Zeeman gap.'®
It is very useful to map the valley degree of freedom into
a pseudospin 1/2. Our convention is that a K state is pseu-
dospin up (+) while K’ is pseudospin down (-). In this lan-
guage, the components of the pseudospin vector density
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P,(q)=P, (q)X+P, (q)¥+P, (q)Z are given by

_p (@ +p,"(@)

P,.(q) 5 , (25)
Po(q)= Py (q)z—ipn’ (q)’ 26)
P, (q)= P, (@)= p, (q) 27)

2 9
while the total density is given by

(@) =py (@) +p, (@) (28)
In this language, Eq. (24) becomes

E 1 (e
N© 4—(5)§ Y ,(q){p,(— ©Xp,(a))

2

+ i(e—)E L@UP(- ) P(q)].  (29)
v, \ k€ /g
with
Y,(q) =2H,(q) - X,(q), (30)
J(q)=-X,(q)=- J dy e 2o(yqt), (31)
0

where Jy(x) is a Bessel function. For example, the liquid
state at v=1 has an energy given by

E

N BX,,(O) + Xn(0)|<Pn(0)>|2] (32)

and [(P,(0))|=1/2. [We have taken into account the positive
background to cancel the divergence of H,(0).] It follows
that this liquid state is fully pseudospin polarized but the
direction of polarization is arbitrary. This is also true for the
crystal states (see below), i.e., our Hamiltonian has an SU(2)
symmetry. We deduce that both states support a pseudospin
wave Goldstone mode with a ¢ dispersion at long wave-
length.

We remark that, in view of Egs. (8) and (9), the pseu-
dospin degree of freedom is equivalent to the sublattice de-
gree of freedom for Landau level n=0. This is not true, how-
ever, for other values of n.

II1. SINGLE- AND TWO-PARTICLE
GREEN’S FUNCTIONS

The average values <p,‘,””l(B)> describing the crystal states
can be extracted from the Matsubara single-particle Green’s
function G, which is defined by (with X=k¢?)

GI7 (XX, 7)== (Te,,x(Del, (0. (33)

Its Fourier transform is
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’ 1 ] '
617 (Gr=07) = - 5 OO

dxx'
XGT7 (XX, 7), (34)
so that
(b7 (G))=GT (G, r=0"). (35)

The equation of motion for the Green’s function in the
Matsubara formalism is obtained by using the Heisenberg
equation

J
h—(...) =[Hygr— pN,(...)], (36)

aT

which is given by
. e o’ g2
flio,— WGy (G,w,) = 2, 2 Fg e ¢
" G’

XGT" (G, @,) = 18600001, (37)
where w,, is a fermionic Matsubara frequency and the matrix

’
elements F(;¢,, are given by

FO7(G,G) = H,(G - G) 2 (pg " (G = G"), 0

- X,(G =G ){p? (G -G")). (38)

To find the order parameters (p_ /"’(G)>, we solve the

Hartree-Fock equation of motion numerically by an iterative

2iadp,™) o)y
oY oY =)y
oY 0

0 oY

and

= 2iaH[{p,") +{p, )]

—X{(p*™
_,+ = 2iaH[(p,") +{(p, )]
- X{p, )y P -
+X{p, )y = X{p, )y
U=
X, )y 0
0 X(p, )"
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method. The procedure is described in detail in Ref. 19.
In order to compute the collective excitations, we define
the 16 response functions

X0l (q,q" ;1) = = N(Tpt"(q, DpS(- q',0))
+ N gp (@Xps" (- q')), (39)

where a,b,c,d are valley indices. For a crystal, q=k+G and
q=k+G’, where k is a vector in the first Brillouin zone. In
the generalized random-phase approximation (GRPA), the
equation of motion for Xﬁ’b’c’d(q,q’ ;i(),,) is given by

1
> [iﬂnl —2F (q,q”)]x(q”,q’ ;i€),) =D(q,q"), (40)

qH

where [ is the 4N X N unit matrix with N as the number of
vectors G kept in the calculation and we have defined the
matrices
Xe+++ X+t4-+ Xet++— X+4-—
Xo—4 Xt——t Xtmbm Xo——m
X= , (41)
X4 X=t—t+ X—t4— X—4——

Xorit Xemmt Xeritm Xeoo

and
F(q7q,) = U(q’q,) (42)
-2 D(q.q")(H(q".q") - X(q".q")), (43)
q//
with
oy 0
0 oY
, 44
oY =Dy =Dy 4
—py )y 2iap,”)
Xp, ")y 0
0 X(p, ")y

5
diaHp) + )] 43)

o - X{p, )y
+X(p, )Y - X{py )y

=2iaH[{p,") +{p, )]

—X{(p>*
oy +2iaX(p,”)

In these equations, we adopt the conventions that (p®?)=(p®*(q—q’)), H{p*"?) stands for H,(q—q'){p*’(q—q’)),y

_ e—inq’ez/z

and a:sin(g%i). The Hartree and Fock interaction matrices are given by
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H,(q) 0 0 H,(q)
H 0 00 0 S (46)
1 o oo o a.q’”
H,(q) 0 0 H,(q)

and

<1
I
(%)

0.q’ - (47)

0 0 0 X,(q)

Once the Hartree-Fock densities (p®”) are calculated for the
crystal state considered, the response functions can be com-
puted using Eq. (40). The collective excitations appear as
poles of these response functions. To derive the dispersion
relations, we follow the poles in the response functions as the
wave vector Kk is varied within the first Brillouin zone. We
consider only the low-energy modes in the present work. The
response functions also have higher-energy modes corre-
sponding to more localized excitations.

The various response functions in Eq. (41) can be com-
bined in an obvious way to give the pseudospin response

functions x, , .Xs s - Xs,.s, and xs s -

IV. PHASE DIAGRAM AND COLLECTIVE MODES

In the absence of Zeeman coupling, each Landau level has
a fourfold degeneracy (the valley degeneracy combined with
the usual spin doublet). For undoped graphene, the n=0 Lan-
dau level multiplet is half filled. We use the notation v,
€[0,4] for the filling factor of each Landau level multiplet.
The total filling factor is thus given by v=4n—-2+wv,. In this
work, we assume a finite Zeeman coupling but neglect any
mixing of Landau level with different spins so that the phase
diagram for v, €[0,2] is identical to that for v, e[2,4].
Without loss of generality, we consider v, € [0,2] from now
on.

Our procedure for solving Eq. (37) does not allow us to
find the absolute ground state of the 2DEG for a given filling
factor. Instead, we have to be contented with comparing the
energy of different phases and finding the lowest one among
them. In this study, we focus on the crystal states and more
specifically on the Skyrme crystals. The filling factor v, is
that of the partially filled Landau level and all filled levels
below n are assumed inert. This procedure is valid when
Landau-level mixing is small provided that one considers
only intra-Landau-level excitations.”?° We consider the fol-
lowing states in each Landau level n:

(1) Electron bubble crystal (eBCn). A triangular lattice
with N, electrons per unit cell and filling factor v,<<0.5.
More precisely, bubbles are maximal density droplets.*>

(2) Hole bubble crystal (hBCn). A triangular lattice with
N, holes per unit cell and filling factor 0.5 <w,<<1. The lat-
tice constant @, of such a crystal is determined by the rela-
tion 27n,0>=|v,~1| where n,=N,/eaj is the hole density
with N, as the number of holes in the bubbles and &= V372
for a triangular lattice. Note that we find both the hBCn state
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5 U VG [ NN
197 . . } 1.0

FIG. 1. (Color online) Pseudospin texture in a MC at filling
factor vy=0.8 in Landau level n=0. The crystal has four merons per
unit cell. In each unit cell, two merons with the same vorticities
have opposite phases as explained in the text. Contours (ranging
from —0.5 to 0.5) indicate the z component of the pseudospin with
dark regions corresponding to positive values.

and the MC considered below to be lower in energy that the
eBCn ground state assumed in Ref. 6 in the same range of
filling factors.

(3) Meron crystal (MC). A square lattice with four merons
of charge —e/2 (if v,<1) or e/2 (if v,>1) per unit cell,
equally spaced and assembled in a checkerboard configura-
tion. The z component of the pseudospin and the vorticities
alternate from one site to the next and two of the merons in
the unit cell have a global pseudospin phase in the x-y plane,
which is opposite to the two others. In semiconductor
2DEGs, this configuration is found for the (spin) skyrmion
crystal when the Zeeman energy is zero.'” This crystal is
represented in Fig. 1.

(4) Meron pair crystal (MPC). A triangular lattice with
four merons per unit cell. At each lattice site, two merons
with the same value of P, and vorticities but opposite values
of the global phase are coupled together so that the pseu-
dospins rotate by 47 on a path encircling the two meron
pairs. This configuration is represented in Fig. 2. The merons
are not equally spaced. The possibility for skyrmions of op-
posite phases to form pairs was considered in Ref. 21. The
MC and MPC phases are in competition with each other and
their energies are very close. We remark that, in the absence
of an equivalent Zeeman coupling A, a single skyrmion
should have a size comparable to that of the sample size. In
a lattice, this causes a strong interaction between skyrmions
that leads to a lattice of merons even when the skyrmion
filling factor |v,—1|—0. It is important to notice that the
limits A;—0 and |v,—1|—0 do not commute.'? If we were
to choose |v,—1|—0 first and then A,—0, we would find
instead a Skyrme crystal.!?

For the numerical calculations, we consider a filling factor
v,e [0.1,0.9]. For v,<0.1 or |v,—1|<0.1, the number of
reciprocal lattice vectors needed in the calculation becomes
very large and we do not get good convergence. This is due
to the fact that the size in real space of the quasiparticles
(electrons for v,<0.1 or holes or skyrmions for |v,—1|
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FIG. 2. (Color online) Pseudospin texture in a MPC at filling
factor 1y=0.8 in Landau level n=0. The lattice is triangular and
there are four merons per unit cell. Merons are bound in pairs with
same value of P, and vorticities but opposite phases at each lattice
site. Contours (ranging from —0.5 to 0.5) indicate the z component
of the pseudospin with dark regions corresponding to positive
values.

<0.1) decreases so that more wave vectors are needed to
describe them. Also, the Hamiltonian has electron-hole sym-
metry around v,=1 so that the sequence of phase transitions
found for v,>1 is the mirror image of that for v,<<1 with
particles replaced by antiparticles. For example, the counter-
part of the phase eBCI at v,=0.2 is a hBC1 at v,=1.8 with
a filling of holes given by v, ;,=2.0—1.8=0.2. Similarly, the
counterpart of a crystal of merons (with charge —e/2) at v,
=0.8 (with a filling of merons given by v, ,=1.0-0.8=0.2)
is a crystal of antimerons (charge +e/2) at v,=1.2 with a
filling of antimerons given by v, ,,=1.2-1.0=0.2.

We show in Fig. 3 the energies of different phases of the
2DEG in graphene for Landau level n=0. We find the fol-
lowing sequence: eBCl for v,e[0.1,0.5], hBC1 for y,
€[0.5,0.55], MC for v, €[0.55,0.65], and MCP for v,
€[0.65,0.9]. As noted above, this sequence of transitions is
the same as that calculated for a 2DEG in GaAs-AlGaAs

(E/N)/(e%/xl)

o

FIG. 3. (Color online) Hartree-Fock energy per electron as a
function of filling factor for various crystal phases in Landau level
n=0.
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FIG. 4. (Color online) Dispersion relation of the two Goldstone
modes of the eBCI state at v;=0.2 in Landau level n=0. The dis-
persion is plotted along the irreducible Brillouin zone of the trian-
gular lattice. The left (right) y axis gives the phonon (pseudospin)
frequency. The phonon mode has its biggest weight in Xp,p, and
Xs.,.S, while the pseudospin wave mode has its biggest weight in

Xs,.s, and xs s .

quantum wells in the absence of Zeeman coupling because
the effective interactions Hy(q) and X,(q) are the same in
both cases. To determine this sequence, we not only find the
state with the lowest energy but also compute the collective
mode spectrum in order to check that the crystal is stable.
For the MC and MPC, where the difference in energy is
close to our numerical accuracy, the stability criteria allows
us to find the correct ground state.

The eBCl1 phase is fully pseudospin polarized but its en-
ergy is independent of the orientation of the pseudospins.
The crystal thus has a full SU(2) symmetry for the pseu-
dospin. The dispersion relations of the two Goldstone modes
of this crystal are given in Fig. 4. The dispersion is plotted
along the path I'-J-X-TI', corresponding to the wave vectors
(ky,k,)=(0,0),(2my/a)(1/33,1/3),(27/ ay)(1/43,0),(0,0).
The wave vector k represents the total distance in reciprocal
space and in units of 27/ a along the path I'-J-X-T" from the
origin I'. The legend indicates in which response function,
Xp,p,2 Xs 5, Xs s, OF X s » the collective mode has the biggest
weight. This gives an indication of the nature of the mode. In
Fig. 4, the phonon mode has its biggest weight in Xo,.0, and
Xs_s, while the pseudospin wave mode has its weight in
Xs.s. and xs s . That is, since we forced the pseudospin to be
poiarized aléné the x direction, the pseudospin wave mode
corresponds to a precession of the pseudospin about the x
axis. The phonon dispersion is typical of what is found for a
WC.!° Tt is gapless with w~¢*? behavior at small wave
vector. For the pseudospin wave, the dispersion is w~ ¢* at
small wave vector confirming the SU(2) symmetry. At v,
=0.2, the bandwidth of the pseudospin mode is two orders of
magnitude smaller than that of the phonon mode. While the
bandwidth of the phonon mode does not change much as v
increases to vy=0.5, that of the pseudospin mode changes
dramatically, becoming of the same order as that of the pho-
non mode at v5=0.5. The pseudospin stiffness thus increases
rapidly with »,. The hBC1 dispersion has the same features
as the eBC1 as can be seen in Fig. 5.
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FIG. 5. (Color online) Dispersion relation of the two Goldstone
modes of the hBC1 state at »;=0.55 in Landau level n=1. The
dispersion is plotted along the irreducible Brillouin zone of the
triangular lattice. The phonon mode has its biggest weight in Xp,0,
and xs_ s while the pseudospin wave mode has its biggest weight in

Xs,.8, and Xs_.S.:

For »>0.55 in n=0, we find that, within our numerical
accuracy, the MC and MPC have the same energy and
are lower in energy than the other phases considered.
The dispersion relations, however, indicate that the MC is
stable in the range v € [0.55,0.65] while the MPC is unstable
in that range and vice versa for v € [0.65,0.90] so that there
is a phase transition between these two states. We show in
Figs. 6 and 7 the dispersion relations for these two states. For
the MC phase, the dispersion is plotted along the path
I'-M-X-T', corresponding to the wave vectors (k,,k,)
=(0,0),(2m/a)(1/2,1/2), 27/ ag)(1/2,0),(0,0) since the
unit cell is that of a square lattice. The dispersion in both
cases shows the usual gapless phonon mode with w~ ¢*?
behavior at small wave vector which appears as a pole of
X0, and three other linearly dispersing Goldstone modes.
Some of the pseudospin modes are degenerate along sections
of the contour of the irreducible Brillouin zone. The degen-

0.030
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0.00%_0 -
r

FIG. 6. (Color online) Dispersion relation of the Goldstone
modes of the MPC state at 1y=0.8 in Landau level n=0. The dis-
persion is plotted along the irreducible Brillouin zone of the trian-
gular lattice. The legend indicates in what response function each
collective mode has its biggest weight.
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FIG. 7. (Color online) Dispersion relation of the Goldstone
modes of the MC state at 1,=0.625 in Landau level n=0. The
dispersion is plotted along the irreducible Brillouin zone of the
square lattice. The legend indicates in what response function each
collective mode has its biggest weight.

eracy of some of these modes is only lifted along I'-X in the
MC phase in 7. For wave vector k in an arbitrary direction,
however, the three pseudospin modes are nondegenerate.

The energy of the two meron lattices are invariant under a
rotation of the pseudospin texture around the x, y, or z axis
since there is no equivalence of the Zeeman coupling in the
graphene 2DEG. This implies that there are three indepen-
dent ways to rotate the spins of the state without any cost in
energy, leading to the three Goldstone modes found in the
GRPA. Animations of these three modes support this
interpretation. '8

We show in Fig. 8 the energies of different phases of the
2DEG in graphene for Landau level n=1. We find the fol-
lowing sequence: eBC1 for v, €[0.1,0.5], hBC1 for v,
€[0.5,0.75], MC for v, €[0.75,0.80], and MPC for v,
€[0.75,0.90]. The MC and MPC phases have almost the
same energy within our numerical accuracy so that these two
phases are represented by the line MC-MPC in 8. In com-
parison with the case n=0, we see that the filling factor range
for which a pseudospin texture exists for n=1 has decreased

-0.20
i —=—— eBC1
-0.25 ——=e—— hBC1
[ ———— MC-MPC
Z -0.30f
© [
= I
E I
w -0.351
3 e
[ &
-0.40 \k"\
L. 1 P IR TR .

04902 04 06 08 1.0

FIG. 8. (Color online) Hartree-Fock energy per electron as a
function of filling factor for various crystal phases in Landau level
n=1.
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FIG. 9. (Color online) Hartree-Fock energy per electron as a
function of filling factor for various crystal phases in Landau level
n=2.

relative to n=0. In contrast with what happens in a conven-
tional 2DEG, however, there is a possibility for such textures
in Landau level n=1. This is due to the fact that the effective
interactions in the two systems are now different in view of
Eq. (21).

The dispersion of the gapless modes in Landau levels n
=1 and 2 are similar to what is seen in n=0 as can be seen
from Fig. 5. Bubble crystals with more than one electron per
site have additional gapped modes related to internal excita-
tions of the bubbles; we do not focus on these modes in this
work.’

Figure 9 shows the phase diagram of the 2DEG in
graphene for Landau level n=2. We find here a sequence of
transitions involving electron and hole bubble crystals with
one or two electrons per bubble. The two meron phases MC
and MPC have higher energy than the other phases consid-
ered so that there are no meron crystals of these types in n
=2 and most probably in higher Landau levels as well. We
emphasized however that our calculation is restricted to the
range of partial filling factor v—1>0.1. Because the pseu-
dospin textured states are pushed closer to v=1 as n in-
creases, we cannot rule the existence of meron crystals for
n=2. Indeed, Yang et al.'' have shown that skyrmions are
the lowest-energy-charged excitations in graphene for Lan-
dau levels up to n=3. Meron crystals could thus also be
present in Landau levels n=2,3.

For n=2 and near the filling factor 1,=0.5, none of the
phases that we considered in our analysis are stable so that
the ground state must be of another crystal type (most prob-
ably the stripe phase if we compare with the situation in
semiconductor 2DEG). This is also the conclusion of
Hartree-Fock calculations in Refs. 6 and 9. A stripe state
probably occurs near v,=0.5 for Landau level n=2 in the
HFA.

V. SIGNATURES OF WIGNER AND MERON CRYSTALS
IN PINNING BEHAVIOR

Generally, collective modes of 2DEGs are detected by
inelastic light scattering or via microwave absorption. The

PHYSICAL REVIEW B 78, 085309 (2008)

latter experiments are most sensitive to the long-wavelength
low-frequency behavior of the collective modes. A disorder
potential pins the WC in the sense that the phonon mode
becomes gapped at a pinning frequency w), that is dependent
on the strength of the potential and on that of the magnetic
field. The behavior of the pinning frequency with magnetic
field depends critically on the interplay between different
length scales: the size of the electron wave function on each
lattice site, the lattice periodicity, and the magnetic
length.?>?3 The pinning frequency in the longitudinal con-
ductivity may be inferred from results such as those found
here using the replica trick.>*

In the graphene case, both the pseudospin and phonon
mode involve charge fluctuations so we may speculate that
the pseudospin mode will also be pinned in the presence of
disorder in the sense of opening a gap in their spectrum
because the latter generically breaks pseudospin symmetry.
Disorder should also pin the four Goldstone modes of the
meron crystals: the phonon mode and the three pseudospin
wave modes. If such pinned modes are separately observ-
able, they could provide a unique signature of the formation
of a Wigner or meron crystals in graphene. This conclusion
should be contrasted with the case of a semiconductor
2DEG. There, a WC has only one gapless (phonon) mode at
finite Zeeman coupling. A skyrmion (finite Zeeman cou-
pling) or meron (zero Zeeman coupling) crystal has one pho-
non mode, which is gapped and one (Wigner) or three
(meron) gapless spin wave modes that remain gapless in the
presence of disorder.

For the pinning modes to be visible in microwave absorp-
tion experiments,’ they must show up in R[o,(k—0,w)]
where o is the conductivity tensor. Equivalently, they must
appear as poles of the current-current response functions
S[Xi{’i](k—>0, w)] with i=x,y. A calculation of the conductiv-
ity tensor in the presence of disorder is difficult for the crys-
tal states. For a simple WC (one phonon mode only), it can
be done by mapping the system to an effective harmonic
model?>?* and using the replica trick. So far there has been
no generalization of this method to crystals with an addi-
tional layer or valley degree of freedom. To test our specu-
lation that the phonon and valley pseudospin modes are vis-
ible in microwave absorption, we “simulate” a disorder
potential by adding a periodic external potential. Note that
our HFA method forces us to choose this periodicity to be the
same as that of the crystal considered.

In formulating the relevant response function for conduc-
tivity, the current operator is built up from operators that
excite electrons between Landau levels. This presents prob-
lems when the Hilbert space is restricted to one Landau level
as in our calculation. In principle one needs to retain other
Landau levels in order to obtain a nonvanishing result (sig-
nificantly complicating the calculations). To circumvent this,
we wish to find an appropriate projection of the current op-
erator into a single Landau level. To do this, we generalize a
method first introduced by Girvin et al. in Ref. 25. This
procedure captures the drift current j(r)= %p(r)V U(r) X Z of
the electrons in the potential U(r) and gives a current that
satisfies the continuity equation. Improvements upon this
procedure are possible but lead to very complicated
expressions.?® We first write a second quantized Hamiltonian

085309-9



COTE, JOBIDON, AND FERTIG

including the (total) density p(k) and valley-pseudospin op-
erator P(k)

H=N

4( )EY(q)p<— q)p(q)

- N¢<e—)2 X(q)P(- q) - P(q), (48)
Kl q

where

Y(q) =2H(q) - X(q). (49)
With the Hamiltonian of Eq. (48), we obtain the equation of
motion of the density operator

2 = o0, ), (50)

which we linearize by writing p(k) — (p(k))+ Sp(k) where
the average is evaluated in the HFA. Keeping terms up to
linear order in Jp(k), we find

dop(k)
dt

h

2
= (7)2 [Y(G)- Y(k-G)]
Kt/ g
X sin(kG€%/2){p(G))ép(k — G)
2
—4(i)2 [X(G) - X(k - G)]
INYars

Xsin(kG€*2){(P(G)) - SP(k - G). (51)

This is the equation of motion of the density in the GRPA.
To find an expression for the current operator valid at
small k, we make the approximation

sin(k X G€%/2) =k - (G X 2?/2), (52)
and use the continuity equation
dop(k) i

e

" k-jk). (53)

We get in this way
. 3
i) =— 5(5)2 (G X 20[Y(k+G) - Y(G)]
K/l G
X{p(- G))dp(k +G)
3
+ 21-(;—)2 (G X 20)[X(k +G) - X(G)]
K/ G

X(P(-G))- Pk +G). (54)

This expression shows that the current can have contribu-
tions from both density and pseudospin fluctuations. In terms
of the original p; (q) operators, we can write the current
expression as

3
100 == i3 3 FykG)opuk+G). (59)
K G a,b

where
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F,1(k,G) = (Gt X 2)[H(k + G) - H(G) Kp(= G)) 3,
- (GE X 2)[X(k +G) - X(G)Kpy.o(- G))-
(56)

With Eq. (55) for the current, we can easily write the
current-current Matsubara Green’s function tensor

/\/]J(k’ T) == Ngo(Tj(k’ T)j(_ kv0)>’ (57)

so that the retarded current-current response function is fi-
nally given by

3\2
X],J(k’ w) == (;_K> 2 E Fa,b(k’G)

a,b,c,d G,G'

X"k + G,k +G',w)F, (-k,~G').
(58)

If we apply an external potential, the Hamiltonian H
— H+H_,, with

2
Hext = N¢) e_ 2 E Wa(_ (l)Pa,a(Q) . (59)
kl) 7 4

We allow the potential W,(q) to be different for the K and K’
valleys. With this potential, the function F,;(k,G) in Eq.
(58) must be replaced by

F;(k,G) =— (G X Zl)Wx(- G) &, ;6 x
—(G X ZO)Wki(-G) 6 ;0 xr
+ (Gt X 2)[H(k +G) - HG){p(- G))5;
— (Gt X )[X(k +G) - X(G)Kp; (- G)).
(60)

In pseudospin language, this means that the current in Eq.
(54) becomes j(k) — j(k)+jy(Kk), where

. 3
(k) =— Z(Z)E (G X Z0)W,(- G)p(k + G)
K/ G

. 3
- i(e—>2 (G X 2)W_(- G)SP.(k + G),
2 fLK G

(61)

and where W..(-G)=Wg(-G) = W/ (-G). Note that for con-
sistency, we also include the external potentlal in the calcu-
lation of the (p; (G))'s as well as in that of ¥’ b(d(k+G k
+G',w).

In the absence of any external potential, we find that, for
the Wigner or meron crystal, only the phonon mode (and
some higher-energy modes) appears as a pole of
S[X/x Y(k,w)] for any wave vector k. The phase modes are
conspicuously absent of the current response. We explain this
by the fact that the phase modes are transverse modes; the
motion of a pseudospin is perpendicular to the local value of
that pseudospin so that the term (P(-G'))- SP(k+G’)=0 in
Eq. (54). Also, these modes have no weight in the density-
density response function. They cannot contribute to the lo-
cal current.
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FIG. 10. (Color online) Dispersion relation of the phonon and
pseudospin modes of the WC at 1,=0.4 in Landau level n=0 in an
external potential with Wx=-0.005 and Wg,=0. The dispersion is
plotted along the irreducible Brillouin zone of the triangular lattice
(see Fig. 5). Both the phonon and pseudospin wave mode are
gapped by the external field.

This conclusion is unchanged, for the WC state, if we
apply an external potential with Wi(q)=Wg/(q). The phonon
mode is gapped by that potential but the pseudospin mode
dispersion remains gapless because the pseudospin symme-
try has not been broken. To induce a gap in the pseudospin
mode, we must allow Wg(q) # W (q) so that the external
potential can couple to the z component of the pseudospin;
P, (@) =[p,"(q)—p, (q)]/2. We show in Fig. 10 the disper-
sion relation of the collective modes of the WC for v=0.4
and with an external potential that is different in the two
valleys, i.e., Wxg=-0.005 and Wy,=0. Both the phase and
phonon modes are now gapped as expected but Fig. 11
shows that, once again, only the phonon appears as pole of
the current. This fact can be readily understood; the external
potential is much weaker than the exchange energy that
forces the parallel alignment of the pseudospins. It follows
that when the external potential is applied, the pseudospins
all align along the z axis even though the external potential is

3.0
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(kw)] (arb. units)

JJ
XX
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FIG. 11. Imaginary part of the current response function. From
left to right: k,=k,=0.001,0.01,0.05,0.1,0.3 in units of 2/a.
These peaks come from the phonon mode. There is no peak coming
from the pseudospin mode.
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modulated in space. The pseudospin mode is a transverse
mode and so both terms (P(-G'))-SP(k+G’) and &P.(k
+G) in the definition of the current in Eq. (54) are zero. For
the phonon mode in the WC state, the peak in the current
response stays finite with decreasing wave vector so that the
phonon mode is visible at k=0 and can contribute to the
absorption.

For MC, the situation is more complicated. An external
potential W_(—G) acts as a pseudomagnetic field. If it is uni-
form in space; it acts effectively as a pseudospin Zeeman
coupling and produces a transition from a meron to a
bimeron crystal with two Goldstone modes (the phonon
mode and a gapless pseudospin mode related to the U(1)
symmetry of the Hamiltonian) and two gapped pseudospin
modes.'® The pseudospin modes are transverse and so the
second term becomes zero because of the uniformity of the
potential. Thus, there should again be no contribution of
these modes to the conductivity. This is the case for two of
the pseudospin modes but the gapless pseudospin mode has a
weight in the density-density response function at finite wave
vector k and does appear in the current response along with
the phonon peak. Both peaks go to zero with decreasing
wave vector however.

For MC, the second term in jy(k) should be finite if
W_(-G) is nonuniform, in contrast to the WC case, because
some of the pseudospin modes involve a fluctuation in the Z
component of the pseudospin. Unfortunately, we find MC to
be very sensitive to an inhomogeneous external potential as
indicated by instabilities in the collective mode spectrum at
small values of k. This is likely related to the extreme close-
ness in energy of MC and MPC states so that the external
potential may lead to a different and possibly more compli-
cated textured state. Thus it is not possible to compute the
response functions at small wave vector k for these textured
states without better knowledge of their ground state struc-
ture in the presence of a pinning potential. We note that at
finite wave vector, where the dispersion is well behaved, the
pseudospin modes do appear in the current response as ex-
pected.

In spite of the difficulty in demonstrating the presence of
a signature of the pinned phase modes in the dynamical con-
ductivity at small wave vector, we believe that at least a
small response will in fact generically always be present.
Beyond the density fluctuations in the pseudospin modes due
to spin-charge coupling, there is a further density response
due to the fact that the A and B sites of the lattice are at
difference positions in real space in a unit cell. In our calcu-
lations, A and B were treated as two orthogonal “spin” states
of an electron, but their slightly different locations in real
space were not included in the model. If this was included,
we expect that an oscillation of the pseudospin that changes
the relative weight of an electron on the A or B sublattice (or,
equivalently, on the K and K’ valleys) will translate into a
change in the position of that electron or into a dipole fluc-
tuation. Thus, if this distinction were properly included in
our model, we would expect that the phase mode would ap-
pear as a pole of the current response just as the phonon
mode does, albeit weakly, since the symmetry breaking is
small.

In closing this section, we remark that, in Fig. 4, the ef-
fective stiffness for the pseudospin mode is two orders of
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magnitude smaller than that of the WC for filling factor v
=0.2. In the presence of disorder, we might then expect two
pinning modes of very different frequencies for a WC and it
may be impossible to detect the two modes simultaneously in
an actual experiment. The MC dispersion does not suffer
from this problem since all four modes appear to have simi-
lar bandwidths.

VI. CONCLUSION

We have shown in this work that the 2DEG in graphene
can support WCs and MCs with valley-pseudospin textures.
Our numerical analysis was restricted to filling factor v,
€[0.1,0.9] in each Landau level n and we concluded that, in
this range, MCs are present in Landau levels n=0 and 1 only.
We have computed the dispersion relation of the collective
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excitations of these two crystal states and showed that the
WC has one extra Goldstone mode with a quadratic disper-
sion at small wave vector in addition to the phonon mode.
MCs have three extra Goldstone modes in addition to the
phonon mode. These extra Goldstone modes are valley-
pseudospin fluctuations. In graphene, all these modes involve
density fluctuations, and we speculated that these last modes
could be visible as pinning modes in microwave absorption
spectrum in a real disordered system.

ACKNOWLEDGMENTS

This work was supported by a research grant from the
Natural Sciences and Engineering Research Council of
Canada (NSERC) for R.C. and an NSF Grant No. DMR-
0704033 for H.A.F. Computer time was provided by the
Réseau Québécois de Calcul Haute Performance (RQCHP).

'P. K. Lam and S. M. Girvin, Phys. Rev. B 30, 473 (1984); D.
Levesque, J. J. Weis, and A. H. MacDonald, ibid. 30, 1056
(1984); K. Esfarjani and S. T. Chui, ibid. 42, 10758 (1990); K.
Yang, F. D. M. Haldane, and E. H. Rezayi, ibid. 64, 081301(R)
(2001); X. Zhu and S. G. Louie, ibid. 52, 5863 (1995).

2For recent reviews, see Physics of the Electron Solid, edited by
S. T. Chui (International, Boston, 1994); H. Fertig and H. Shaye-
gan, in Perspectives in Quantum Hall Effects, edited by S. Das
Sarma and A. Pinczuk (Wiley, New York, 1997), Chaps. 5 and 9,
respectively.

3P D. Ye, L. W. Engel, D. C. Tsui, R. M. Lewis, L. N. Pfeiffer,
and K. West, Phys. Rev. Lett. 89, 176802 (2002); Yong P. Chen,
G. Sambandamurthy, Z. H. Wang, R. M. Lewis, L. W. Engel, D.
C. Tsui, P. D. Ye, L. N. Pfeiffer, and K. W. West, Nat. Phys. 2,
452 (2006); Y. P. Chen, R. M. Lewis, L. W. Engel, D. C. Tsui, P.
D. Ye, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 91,
016801 (2003); R. M. Lewis, Y. Chen, L. W. Engel, D. C. Tsui,
P. D. Ye, L. N. Pfeiffer, and K. W. West, Physica E (Amsterdam)
22, 104 (2004); R. M. Lewis, P. D. Ye, L. W. Engel, D. C. Tsui,
L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 89, 136804
(2002); R. M. Lewis, Y. Chen, L. W. Engel, D. C. Tsui, P. D. Ye,
L. N. Pfeiffer, and K. W. West, ibid. 93, 176808 (2004); R. M.
Lewis, Y. Chen, L. W. Engel, P. D. Ye, D. C. Tsui, L. N. Pfeiffer,
and K. W. West, Physica E (Amsterdam) 22, 119 (2004); Yong
P. Chen, R. M. Lewis, L. W. Engel, D. C. Tsui, P. D. Ye, Z. H.
Wang, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 93,
206805 (2004).

4A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, Phys. Rev.
Lett. 76, 499 (1996); M. M. Fogler, A. A. Koulakov, and B. L
Shklovskii, Phys. Rev. B 54, 1853 (1996); R. Moessner and J. T.
Chalker, ibid. 54, 5006 (1996); M. M. Fogler and A. A. Koula-
kov, ibid. 55,9326 (1997). For a review of the bubble and stripe
phases in higher Landau levels, see M. Fogler, in High Magnetic
Fields: Applications in Condensed Matter Physics and Spectros-
copy, edited by C. Berthier, L.-P. Levy, and G. Martinez
(Springer-Verlag, Berlin, 2002), p. 99.

SR. Coté, C. B. Doiron, J. Bourassa, and H. A. Fertig, Phys. Rev.
B 68, 155327 (2003).

6C.-H. Zhang and Yogesh N. Joglekar, Phys. Rev. B 75, 245414
(2007).

7C.-H. Zhang and Y. N. Joglekar, Phys. Rev. B 77, 205426
(2008).

8M. 1. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys.
2, 620 (2006).

°J. Wang, H. A. Fertig, A. P. Iyengar, and L. Brey,
arXiv:0805.3736 (unpublished).

I0M. O. Goerbig, R. Moessner, and B. Doucot, Phys. Rev. B 74,
161407(R) (2006).

K. Yang, S. Das Sarma, and A. H. MacDonald, Phys. Rev. B 74,
075423 (2006).

12L. Brey, H. A. Fertig, R. Coté, and A. H. MacDonald, Phys. Scr.,
T t66, 154 (1996).

13Y. P. Shkolnikov, S. Misra, N. C. Bishop, E. P. De Poortere, and
M. Shayegan, Phys. Rev. Lett. 95, 066809 (2005).

14 A H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, arXiv:0709.1163, Rev. Mod. Phys. (to be pub-
lished).

15Hari P. Dahal, Yogesh N. Joglekar, K. S. Bedell, and Alexander
V. Balatsky, Phys. Rev. B 74, 233405 (2006). The exact value of
& depends on the dielectric screening environment provided by
the substrate. Values ranging from 2 to 5 are quoted in the lit-
terature.

167, Bourassa, B. Roostaei, R. Coté, H. A. Fertig, and K. Mullen,
Phys. Rev. B 74, 195320 (2006).

7W. Luo and R. Coté (unpublished).

I8R. C6té, D. B. Boisvert, J. Bourassa, M. Boissonneault, and H.
A. Fertig, Phys. Rev. B 76, 125320 (2007).

I19R. C6té and A. H. MacDonald, Phys. Rev. B 44, 8759 (1991);
Phys. Rev. Lett. 65, 2662 (1990). For mode details on the va-
lidity of the numerical solution of the Hartree-Fock equations,
see also R. Coté, M.-A. Lemonde, C. B. Doiron, and A. M.
Ettouhami, Phys. Rev. B 77, 115303 (2008).

20A. P. Iyengar, J. Wang, H. A. Fertig, and L. Brey, Phys. Rev. B
75, 125430 (2007).

21Y. V. Nazarov and A. V. Khaetskii, Phys. Rev. Lett. 80, 576
(1998).

085309-12



SKYRME AND WIGNER CRYSTALS IN GRAPHENE PHYSICAL REVIEW B 78, 085309 (2008)

22R. Chitra, T. Giamarchi, and P. Le Doussal, Phys. Rev. B 65, 258. M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys. Rev.

035312 (2001); Phys. Rev. Lett. 80, 3827 (1998). B 33, 2481 (1986).
23H. A. Fertig, Phys. Rev. B 59, 2120 (1999). 26]. Martinez and M. Stone, Int. J. Mod. Phys. B 7, 4389 (1993);
24R. Coté, Mei-Rong Li, A. Faribault, and H. A. Fertig, Phys. Rev. R. Rajaraman, ibid. 8, 777 (1994); R. Rajaraman and S. L.
B 72, 115344 (2005). Sondhi, Mod. Phys. Lett. B 8, 1065 (1994).

085309-13



